LbHSP17.9 Participated in the Regulation of Cold Stress in Cut Lily Flowers

Author:

Zhao Jiahui1,Yan Xinyu1,Huang Wei2,Liu Cheng1,Hao Xuan1,Gao Chengye1,Deng Minghua3,Wen Jinfen1

Affiliation:

1. Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming 650021, China

2. College of Agronomy and Life Sciences, Kunming College, Kunming 650021, China

3. Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China

Abstract

Heat shock proteins (HSPs) play important roles in plant stress resistance, but it is not clear whether small molecular HSPs (sHSPs) are involved in the cold stress resistance of lily flowers. In this study, we cloned LbHSP17.9 and found that its expression was up-regulated under cold stress. When LbHSP17.9 was silenced (TRV2::LbHSP17.9) using virus-induced gene silencing in cut lily flowers, the content of malondialdehyde was increased under 4 °C stress treatment. The catalase (CAT) activity in TRV2::LbHSP17.9 was significantly lower than in TRV2 in the first 7 days, and the peroxidase (POD) activity in TRV2::LbHSP17.9 was significantly lower than in TRV2 after 4 days of 4 °C stress. Further analysis showed that the transcription levels of LbCu/ZnSOD, LbMnSOD and LbCAT in TRV2::LbHSP17.9 were lower than those of TRV2 under 4 °C stress. When LbHSP17.9 was overexpressed in lily petal disks, the OE-LbHSP17.9 disks faded later than the controls at 4 °C and the relative conductivity decreased significantly. Overexpression of LbHSP17.9 in Arabidopsis thaliana resulted in fewer injury symptoms and lower MDA content than wild type under 4 °C stress. Therefore, we speculate that LbHSP17.9 can improve the resistance of lily flowers to cold stress.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3