Mycorrhizal Symbiosis Enhances P Uptake and Indole-3-Acetic Acid Accumulation to Improve Root Morphology in Different Citrus Genotypes

Author:

Liu Chun-Yan1ORCID,Guo Xiao-Niu1,Dai Feng-Jun1,Wu Qiang-Sheng1ORCID

Affiliation:

1. College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China

Abstract

Arbuscular mycorrhizal fungi (AMF) are known to enhance plant growth via stimulation of root system development. However, the extent of their effects and underlying mechanisms across different citrus genotypes remain to be fully elucidated. This study investigates the impact of Funneliformis mosseae (F. mosseae) inoculation on plant growth performance, root morphology, phosphorus (P), and indole-3-acetic acid (IAA) concentrations, as well as the expression of related synthesis and transporter genes in three citrus genotypes: red tangerine (Citrus tangerine ex. Tanaka), kumquat (Fortunella margarita L. Swingle), and fragrant citrus (Citrus junos Sieb. ex. Tanaka). Following 12 weeks of inoculation, significant improvements were observed in plant height, shoot and root biomass, total root length, average root diameter, second-order lateral root development, root hair density, and root hair length across all genotypes. Additionally, F. mosseae inoculation significantly increased root P and IAA concentrations in the three citrus genotypes. Notably, phosphatase activity was enhanced in F. margarita but reduced in C. tangerine and C. junos following inoculation. Gene expression analysis revealed a universal upregulation of the P transporter gene PT5, whereas expressions of the auxin synthesis gene YUC2, transporter gene LAX2, and phosphatase gene PAP1 were commonly downregulated. Specific to genotypes, expressions of YUC5, LAX5, PIN2, PIN3, PIN6, and expansin genes EXPA2 and EXPA4 were significantly upregulated in C. tangerine but downregulated in F. margarita and C. junos. Principal component analysis and correlation assessments highlighted a strong positive association between P concentration, P and auxin synthesis, and transporter gene expressions with most root morphology traits, except for root average diameter. Conversely, IAA content and phosphatase activities were negatively correlated with these root traits. These findings suggest that F. mosseae colonization notably enhances plant growth and root system architecture in citrus genotypes via modifications in P transport and IAA accumulation, indicating a complex interplay between mycorrhizal symbiosis and host plant physiology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3