Implications of Vegetal Protein Hydrolysates for Improving Nitrogen Use Efficiency in Leafy Vegetables

Author:

Ciriello Michele1,Campana Emanuela1,De Pascale Stefania1ORCID,Rouphael Youssef1ORCID

Affiliation:

1. Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy

Abstract

Climate change and the degradation of ecosystems is an urgent issue to which the agricultural sector contributes through the overuse of productive inputs such as chemical fertilizers. A disproportionate use of nitrogenous fertilizers combined with low efficiency inevitably results in worsening environmental problems (greenhouse gas emissions, soil degradation, water eutrophication, and groundwater pollution). Nevertheless, increasing population growth puts additional pressure on the already struggling agricultural world. Awareness of these problems has pushed the world of research towards the development of more sustainable but equally efficient strategies in terms of production. The use of biostimulant substances and/or micro-organisms promoting yield, resilience to abiotic stresses in plants, and increasing the functional quality of products have been indicated as a valid strategy to improve the sustainability of agricultural practices. In modern horticulture, the use of vegetable–protein hydrolysates (V-PHs) is gaining more and more interest. These biostimulants could influence plants directly by stimulating carbon and nitrogen metabolism and interfering with hormonal activity, but also indirectly as V-PHs could improve nutrient availability in plant growth substrates and increase nutrient uptake and utilization efficiency. By exploiting this aspect, it would be possible to reduce the use of chemical fertilizers without affecting potential yields. After a brief introduction to the issues related to the intensive use of nitrogen fertilizers, this review focuses on the use of V-PHs as a strategy to increase nitrogen use efficiency (NUE). Starting with their heterogeneous origins and compositions, their effects on nitrogen metabolism, as well as the physiological and biochemical processes involved in these products, this review concludes with an in-depth discussion of the effects of V-PHs on major leafy vegetables.

Funder

European Union Next-Generation EU

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference84 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3