Physiological Responses and Quality Alterations of Pea Sprouts under Salt Stress: Implications for Salt-Tolerant Mechanism

Author:

Guo Juxian1,Zhan Liqing2,Su Xiuxiu2,Wang Tingqin2

Affiliation:

1. Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China

2. College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

Pea sprouts, considered a nutritious and environmentally sustainable vegetable with significant cultivation prospects and market potential, face growth challenges due to salt stress. However, the underlying mechanisms associated with this stress have not been fully elucidated. To address this knowledge gap, we conducted a hydroponic study applying various concentrations of NaCl salt stress to pea sprouts. Systematic analysis was performed on key parameters including germination, plant height, biomass, and enzyme activity of pea sprouts under salt treatment. Our aim was to unravel the underlying mechanisms associated with the impact of salt stress on the growth of pea sprouts. Results revealed that salt treatment significantly inhibited the germination process of pea sprouts’ seeds, leading to a notable decrease in plant height and sprout yield. Salt stress induced an increase in MDA content, a decrease in chlorophyll content, and elevated relative conductivity. However, a low concentration of salt treatment enhanced SOD activity, suggesting the activation of oxidative stress resistance mechanisms in pea sprouts. Moreover, salt treatment exhibited an inhibitory effect on soluble protein content while promoting soluble sugar content in pea sprouts. Additionally, low-concentration salt treatment increased the crude fiber content of pea sprouts, while high-concentration salt treatment inhibited it. In summary, this study indicates that salt stress could cause physiological damage to pea sprouts, but pea sprouts may employ metabolic strategies to adapt to the low concentration of salt stress. These findings contribute to a deeper understanding of the physiological responses of pea sprouts to salt stress and provide valuable insights for its implementation of salt-tolerant cultivation.

Funder

Projects of the Agriculture Department of Guangdong Province

Guangdong Province Science and Technology Planning Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3