Estimation of Water Stress in Potato Plants Using Hyperspectral Imagery and Machine Learning Algorithms

Author:

Duarte-Carvajalino Julio MartinORCID,Silva-Arero Elías AlexanderORCID,Góez-Vinasco Gerardo AntonioORCID,Torres-Delgado Laura MarcelaORCID,Ocampo-Paez Oscar DubánORCID,Castaño-Marín Angela MaríaORCID

Abstract

This work presents quantitative detection of water stress and estimation of the water stress level: none, light, moderate, and severe on potato crops. We use hyperspectral imagery and state of the art machine learning algorithms: random decision forest, multilayer perceptron, convolutional neural networks, support vector machines, extreme gradient boost, and AdaBoost. The detection and estimation of water stress in potato crops is carried out on two different phenological stages of the plants: tubers differentiation and maximum tuberization. The machine learning algorithms are trained with a small subset of each hyperspectral image corresponding to the plant canopy. The results are improved using majority voting to classify all the canopy pixels in the hyperspectral images. The results indicate that both detection of water stress and estimation of the level of water stress can be obtained with good accuracy, improved further by majority voting. The importance of each band of the hyperspectral images in the classification of the images is assessed by random forest and extreme gradient boost, which are the machine learning algorithms that perform best overall on both phenological stages and detection and estimation of water stress in potato crops.

Funder

Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA

Departamento Administrativo de Ciencia, Tecnología e Innovación

Colombia Bio Program

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3