Effect of Red Visible Lighting on Postharvest Ripening of Bananas via the Regulation of Energy Metabolism

Author:

Zhou Xinqun12,Cheng Jianhu123,Sun Jing12,Guo Shuzhen12,Guo Xuexia12,Chen Quan12,Wang Xiaomei14,Zhu Xuan23,Liu Bangdi12ORCID

Affiliation:

1. Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China

2. Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100121, China

3. College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830000, China

4. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

The mechanism by which LED red light irradiation regulates postharvest banana ripening was evaluated in this study by the continuous irradiation of banana fruits at the mature-green stage. In this study, a self-developed LED banana fresh-keeping container lid was used to continuously irradiate the immature banana fruit. The light wavelength was 655.0 ± 1.0 nm, the light intensity was 800.0 ± 10.0 LX, and the height between the LED lamp and the fruit was 15.0 ± 0.5 cm. Bananas stored under dark conditions were used as the negative control group, and bananas stored under dark conditions after spraying with 500.0 mg/L ethephon diluent were used as the positive control group. Changes in physiological parameters related to postharvest banana ripening, such as the respiration rate, ethylene release, texture, color, carotenoid content, chlorophyll content, adenosine triphosphate content, and energy metabolism-related enzyme activities, were measured during 8 days of storage at 20.0 ± 0.1 °C to analyze the key factors determining postharvest banana ripening in response to red light. The red light-irradiated bananas had higher total color differences and higher rates of chlorophyll degradation and carotenoid synthesis than those of the ethephon-treated group during the storage period. Red light irradiation promoted banana fruit ripening and senescence mainly by promoting carotenoid synthesis, capturing absorbed light energy, accelerating energy metabolism, effectively enhancing the activities of the respiratory and energy metabolism-related enzymes H+ adenosine triphosphatase, Ca2+ adenosine triphosphatase, succinate dehydrogenase, cytochrome C oxidase, and malic enzyme, and promoting organic acid degradation. In conclusion, LED red light can be used as a new physical ripening technology for bananas, with a similar effect to that of traditional ethephon treatment.

Funder

independent research and development program of the Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs

scientific and technological innovation team project of primary processing of agricultural products

Key Laboratory of Agro-Products Primary Processing

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3