Genome-Wide Identification and Expression Profiling of the NCED Gene Family in Cold Stress Response of Prunus mume Siebold & Zucc

Author:

Chen Ke123,Li Xue123,Guo Xiaoyu123,Yang Lichen123,Qiu Like123,Liu Weichao123,Wang Jia123,Zheng Tangchun123ORCID

Affiliation:

1. Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

2. Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

3. Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

Abstract

The 9-cis-epoxy carotenoid dioxygenase (NCED) is an enzyme that is crucial in abscisic acid (ABA) biosynthesis, and its role is vital in plant development and abiotic stress. However, the function of the NCED family in Rosaceae plant species remains unclear. Through genome-wide screening, we identified 10, 10, 11, 12 and 13 NCED genes in Prunus mume, Prunus apricot, Prunus salicina, Prunus persica, and Rosa chinensis, respectively. Phylogenetic analysis showed that these NCED genes were divided into six groups. Gene structure analysis showed that the number and size of introns were relatively constant in each subfamily, while the motif composition differed significantly among them. Collinearity analysis revealed a high homology of NCEDs in the Prunus genus. Promoter cis-acting element analysis showed that eight PmNCEDs contained abscisic acid-responsive elements (ABRE). Furthermore, expression profile analysis based on qRT-PCR revealed that PmNCED3, PmNCED8 and PmNCED9 were up-regulated in response to low temperature stress, suggesting their significant role in the plant’s response to cold stress. These findings provide insights into the structure and evolution of PmNCEDs and lay the foundation for further studies regarding their function during cold stress.

Funder

Fundamental Research Funds for the Central Universities

Beijing High-Precision Discipline Project, Discipline of Ecological Environment of Urban and Rural Human Settlements

Special Fund for Beijing Common Construction Project

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3