Quantitatively Determine the Iron Content in the Fruit of ‘Huangguan’ Pear Using Near-Infrared Spectroscopy

Author:

Li Liangjun1,Li Chen1,Fang Jing1ORCID,Chen Xiaolong1,Qin Wen1,Zhang Hanhan1,Xu Jing1,Jia Bing1ORCID,Heng Wei1ORCID,Jin Xiu2ORCID,Liu Li1

Affiliation:

1. School of Horticulture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China

2. School of Information and Computer Science, Anhui Agriculture University, 130 Changjiang West Road, Hefei 230036, China

Abstract

‘Huangguan’ pear has excellent quality, strong adaptability, and good socioeconomic value. Iron is one of the important trace elements in plants, and iron imbalance seriously affects the growth and development of pear trees and reduces their economic benefits. If the iron content in pear fruit can be easily and non-destructively detected using modern technology during the critical period of fruit development, it will undoubtedly help guide actual production. In this study, ‘Huangguan’ pear fruit was used as the research object, and the possibility of using the more convenient near-infrared spectroscopy (900~1700 nm) technology for nondestructive detection of the iron content in the peel and pulp of ‘Huangguan’ pear was explored. First, 12 algorithms were used to preprocess the original spectral data, and based on the original and the preprocessed spectral data, partial least squares regression and gradient boosting regression tree algorithms were used. A full-band prediction model of the iron content in the peel and pulp of ‘Huangguan’ pear was established, and the genetic algorithm was used to extract characteristic wavelengths, establish a characteristic wavelength prediction model, and evaluate the prediction effect of each model according to the coefficient of determination R² and the relative analysis error RPD. After comparison, we found that the prediction model with the best prediction of the iron content in the peel and pulp of ‘Huangguan’ pear reaches class A, and the prediction effect is good and meets expectations. This experiment shows that the use of near-infrared spectroscopy can achieve better prediction of the iron content in the peel and pulp of ‘Huangguan’ pear.

Funder

Anhui Agricultural University Talent Project

China Agriculture Research System of MOF and MARA

Key research project of Natural Science in Colleges and Universities of the Anhui Provincial Department of Education

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3