Comparative Transcriptome Analysis Reveals Differential Gene Expression Pattern Associated with Heat Tolerance in Pepper (Capsicum annuum L.)

Author:

Song Yunpeng1,Zhu Zongwen1,Liu Kaige1,Zhao Yuelu1,Nie Zhixing2ORCID,Zhang Lili1,Muhammad Fahim Abbas3,Yang Xuedong1

Affiliation:

1. Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China

2. Vegetable Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China

3. College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Pepper (Capsicum annuum L.) represents a highly significant agricultural commodity worldwide. Heat stress (HS) poses a severe threat to pepper productivity and quality. However, our understanding of the molecular alterations triggered by HS remains insufficient. This study focused on characterizing P19055 and P17087 as heat-tolerant and heat-sensitive pepper lines, respectively. Through RNA sequencing, we quantified transcript abundance in pepper fruit to investigate the impact of HS on gene expression. A total of 41,793 differentially expressed genes (DEGs) was identified, encompassing 33,703 known genes and 8090 novel genes. Additionally, we obtained 89,821 expressed transcripts, including 52,726 known transcripts and 37,095 new transcripts. By comparing gene expression levels between P17087 and P19055 fruit, we pinpointed 2324 genes exhibiting differential expression across three time points (0.5 h, 2 h, 6 h). Leveraging the weighted correlation network analysis (WGCNA) approach, we constructed a co-expression network of DEGs in P19055 and P17087 based on transcriptomic data acquired at these time points. Notably, nineteen modules displayed significant correlations with the time points following HS during the fruiting stage in both genotypes. Functional enrichment analysis revealed that the DEGs were primarily associated with metabolic and cellular processes in response to stress, particularly photosynthesis at the 2 h and 6 h time points. Moreover, we identified and categorized 26 families of transcription factors, including ERF (19), WRKY (12), MYB (15), NAC (7), bHLH (7), MIKC (7), GRAS (6), and 40 others, which may potentially regulate the expression of key genes in response to HS. Our findings contribute to a comprehensive understanding of the molecular mechanisms governing HS during the fruiting stage of pepper cultivation.

Funder

Shanghai Agriculture Applied Technology Development Program

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3