Potential Use of Superabsorbent Polymer on Drought-Stressed Processing Tomato (Solanum lycopersicum L.) in a Mediterranean Climate

Author:

Cerasola Vito AurelioORCID,Perlotti Lorenzo,Pennisi GiuseppinaORCID,Orsini FrancescoORCID,Gianquinto GiorgioORCID

Abstract

Drought risk is significantly increasing as a consequence of climate change, and the Mediterranean basin will be among the most affected areas by water scarcity in Europe. The development of agronomic strategies enabling the reduction in drought stress in cultivated crops is, therefore, a crucial priority. Superabsorbent polymers (SAPs) are soil amendments capable to retain water and release it when drought occurs. In the present study, the ability of a commercial SAP to improve the drought tolerance of processing tomato (Solanum lycopersicum L.) was assessed on a commercial farm located in northern Italy. A strip plot experimental design was adopted, where three irrigation treatments (IRR100, IRR75, and IRR50, respectively, restituting 100%, 75%, and 50% of crop evapotranspiration) were combined with the application of the SAP (control vs. soil amended with SAP). No significant interaction was observed between irrigation treatments and SAP application in yield and quality traits. SAP application allowed for an average increase in tomato yield (+16.4%) and irrigation water use efficiency (IWUE) (+15.8%), determined by a higher number of marketable fruits. The irrigation strategy IRR75 + SAP maintained the same yield and quality as the full irrigation control (IRR100), increasing the IWUE by about 37%. The experiment demonstrated that, for processing tomatoes grown in the Mediterranean, it is possible to reduce the water supply by 25% when SAP amendment is applied to the soil.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3