Abstract
Powdery mildew disease caused by Oidium neolycopersici is one of the major diseases affecting tomato production in South Africa. Interestingly, limited studies exist on how this disease affects the community structure microbial communities associated with tomato plants employing shotgun metagenomics. In this study, we assess how the health status of a tomato plant affects the diversity of the rhizosphere microbial community. We collected soil samples from the rhizosphere of healthy (HR) and diseased (DR; powdery mildew infected) tomatoes, alongside bulk soil (BR), extracted DNA, and did sequencing using shotgun metagenomics. Our results demonstrated that the rhizosphere microbiome alongside some specific functions were abundant in HR followed by DR and bulk soil (BR) in the order HR > DR > BR. We found eighteen (18) bacterial phyla abundant in HR, including Actinobacteria, Acidobacteria, Aquificae, Bacteroidetes, etc. The dominant fungal phyla include; Ascomycota and Basidiomycota, while the prominent archaeal phyla are Thaumarchaeota, Crenarchaeota, and Euryarchaeota. Three (3) bacteria phyla dominated the DR samples; Bacteroidetes, Gemmatimonadetes, and Thermotoga. Our result also employed the SEED subsystem and revealed that the metabolic pathways involved were abundant in HR. The α-diversity demonstrates that there is no significant difference among the rhizosphere microbiomes across the sites, while β-diversity demonstrated a significant difference.
Funder
The National Research Foundation of South Africa Grants
Subject
Horticulture,Plant Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献