Rapid Identification of Apple Maturity Based on Multispectral Sensor Combined with Spectral Shape Features

Author:

Zhang Mengsheng,Shen Maosheng,Pu Yuge,Li Hao,Zhang Bo,Zhang Zhongxiong,Ren Xiaolin,Zhao Juan

Abstract

The rapid and convenient detection of maturity is of great significance to determine the harvest time and postharvest storage conditions of apples. In this study, a portable visible and near-infrared (VIS/NIR) analysis device prototype was developed based on a multispectral sensor and applied to ‘Fuji’ apple maturity detection. The multispectral data of apples with maturity variation was measured, and the prediction model was established by a least-square support vector machine and linear discriminant analysis. Due to the low resolution of the multispectral data, regular preprocessing methods cannot improve the prediction accuracy. Instead, the spectral shape features (spectral ratio, spectral difference, and normalized spectral intensity difference) were used for preprocessing and model establishment, and the combination of the three features effectively improved the model performance with a prediction accuracy of 88.46%. In addition, the validation accuracy of the optimal model was 84.72%, and the area under curve (AUC) value of each maturity level was higher than 0.8972. The results show that the multispectral sensor is an appliable choice for the development of the portable detection device of apple maturity, and the data processing method proposed in this study provides a potential solution to improve the detection accuracy for multispectral sensors.

Funder

National Natural Science Foundation of China

Major Special Science and Technology Project of Shaanxi

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3