Influence of the Electrical Conductivity of the Nutrient Solution in Different Phenological Stages on the Growth and Yield of Cherry Tomato

Author:

Lu Tao,Yu Hongjun,Wang Tanyu,Zhang Taoyue,Shi Chenhua,Jiang Weijie

Abstract

Soilless cultivation is an important alternative to traditional agriculture and facilitates harvest by allowing for the precise control of plant nutrients to maximize the vegetable production of uniform fruits. Nutrient solution concentration is a critical factor affecting nutrient supply in soilless cultivation. Although some nutrient solution concentrations throughout the growth cycle for tomatoes have been developed, there are limited studies on nutrient solution concentrations at different phenological stages. Hence, we studied the effects of nutrient solution concentrations in different growth stages on the physiology, yield and fruit quality of cherry tomatoes with a previously developed nutrient solution formulation. The whole growth cycle of the tomato was divided into three stages which were irrigated with a nutrient solution with different electrical conductivities (ECs). A total of five treatments were set: CK (EC was 3.0 ms·cm−1 for the 1st–3rd stage), T1 (EC was 1.5 ms·cm−1 for the 1st stage, 3.0 ms·cm−1 for the 2nd–3rd stage), T2 (EC was 1.5 ms·cm−1 for the 1st stage, 3.0 ms·cm−1 for the 2nd stage, 4.5 ms·cm−1 for the 3rd stage ), T3 (EC was 1.5 ms·cm−1 for the 1st–2nd stage, 3.0 ms·cm−1 for the 3rd stage), and T4 (EC was 1.5 ms·cm−1 for the 1st stage, 4.5 ms·cm−1 for the 2nd–3rd stage). The results showed that the tomato plants treated with T2 and T4 had the strongest growth (with the highest plant height and leaf formation) as well as the best leaf photosynthetic performance (the chlorophyll content and the net photosynthetic rate were significantly increased). Additionally, the use of T2 and T4 significantly improved cherry tomato fruit quality as reflected by the significant promotion of total soluble solids by 9.1% and 9.8%, respectively, as well as by the improvement of maturity by 12.9% and 13.7%, respectively. Additionally, the yields for treatments T2 and T4 were increased by 7.3% and 13.4%, respectively, which was mainly due to the increase in single fruit weight. More importantly, nutrient solution EC management improved fertilizer use efficiency: the partial fertilizer productivity of T1, T2, and T4 was increased by 2%, 7% and 14%, respectively, while that of T3 was reduced by 7%. A comprehensive comparison showed that the ranking of the effect on production was T4 > T2 > T1 > CK > T3. Our results suggest that the regulation of EC in different growth stages affects the growth and yield characteristics of cherry tomatoes. This study may provide some references for further research to adjust the concentration of nutrient solutions to improve the utilization rate of fertilizer and fruit quality.

Funder

National Natural Science Foundation of China

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3