Thidiazuron Induced In Vitro Clonal Propagation of Lagerstroemia speciosa (L.) Pers.—An Important Avenue Tree

Author:

Ahmad Naseem,Faisal MohammadORCID,Ahmad Anees,Alatar Abdulrahman A.,Qahtan Ahmed A.ORCID,Alok AnshuORCID

Abstract

A high throughput regeneration protocol has been developed for Lagerstroemia speciosa through node explants under the regime of various plant growth regulators (PGRs). This protocol can provide an alternative mode to seed-grown plants and minimize the cost–time of regeneration, significantly. Murashige and Skoog (MS) medium containing various combinations of PGRs exhibited a marked stimulatory effect on morphogenesis. Of the various combinations tried, node explant pretreated with thidiazuron (TDZ; 5.0 µM) for 4 weeks and followed with transfer into MS medium containing 1.0 μM 6-benzyladenine (BA) and 0.25 μM α-naphthalene acetic acid (NAA) was reported to be the best treatment as it resulted in a maximum number of 24.5 shoots with an average shoot length of 7.1 cm per explant in 90% of cultures after 12 weeks of incubation. The in vitro-generated shoots rooted satisfactorily in the adopted ex vitro method of rooting, which saves time and cost. Among the different treatments, the greatest rooting percentage (85%) was observed in the 200 μM IBA-treated shoots, with the highest root number (8.7) and length (3.4 cm) occurring after 4 weeks. Four months after being transferred to ex vitro, some of the physiological attributes of the in vitro-propagated plants were examined and compared to the ex vitro plants. Further, analysis of the genetic integrity in tissue culture-raised plantlets along with the parental tree was accomplished through DNA-based RAPD technique. The monomorphic banding pattern obtained by the RAPD primers resulted in a high level of genetic uniformity in regenerated plants.

Funder

Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3