Genome-Wide Identification and Characterization of DnaJ Gene Family in Grape (Vitis vinifera L.)

Author:

Chen Tianchi,Xu Tao,Zhang TianyeORCID,Liu Tingting,Shen Leyi,Chen Zhihui,Wu Yueyan,Yang Jian

Abstract

Grape production in southern China suffers great loss due to various environmental stresses. To understand the mechanism of how the grape plants respond to these stresses is an active area of research in developing cultivation techniques. Plant stress resistance is known to rely on special proteins. Amongst them, DnaJ protein (HSP40) serves as co-chaperones of HSP70, playing crucial roles in various stress response. However, the DnaJ proteins encoded by the DnaJ gene family in Vitis vinifera L. have not been fully described yet. In this study, we identified 78 VvDnaJs in the grape genome that can be classified into three groups—namely, DJA, DJB, and DJC. To reveal the evolutionary and stress response mechanisms for the VvDnaJ gene family, their evolutionary and expression patterns were analyzed using the bioinformatic approach and qRT-PCR. We found that the members in the same group exhibited a similar gene structure and protein domain organization. Gene duplication analysis demonstrated that segmental and tandem duplication may not be the dominant pathway of gene expansion in the VvDnaJ gene family. Codon usage pattern analysis showed that the codon usage pattern of VvDnaJs differs obviously from the monocotyledon counterparts. Tissue-specific analysis revealed that 12 VvDnaJs present a distinct expression profile, implying their distinct roles in various tissues. Cis-acting element analysis showed that almost all VvDnaJs contained the elements responsive to either hormones or stresses. Therefore, the expression levels of VvDnaJs subjected to exogenous hormone applications and stress treatments were determined, and we found that VvDnaJs were sensitive to hormone treatments and shade, salt, and heat stresses, especially VIT_00s0324g00040. The findings of this study could provide comprehensive information for the further investigation on the genetics and protein functions of the DnaJ gene family in grape.

Funder

the Key Research and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3