Rootstock-Mediated Transcriptional Changes Associated with Cold Tolerance in Prunus mume Leaves

Author:

Hayat Faisal,Ma Chengdong,Iqbal ShahidORCID,Huang Xiao,Omondi Ouma Kenneth,Ni Zhaojun,Shi Ting,Tariq Rezwan,Khan Ummara,Gao Zhihong

Abstract

Japanese apricot (Prunus mume) is remarkably valuable for its high ornamental and economic importance due to its distinctive features. Low temperature is a serious environmental constraint for this species, restricting its cultivation and dispersal in the north of China. To address this issue, breeding requires an understanding of the molecular mechanisms underlying responses to cold stress. We examined the leaf physiological and transcriptome profile by RNA sequencing in ‘Bungo’ scion cultivar grafted onto Prunus mume (cold-sensitive) and Prunus armeniaca (cold-tolerant) rootstocks at 4 °C for 0, 6, and 24 h. Our results revealed that the increased MDA concentration in the leaves of P. mume cultivar (cold-sensitive) suggests that cold stress might cause oxidative damage and increased sensitivity. Moreover, the cold-tolerant cultivar (P. armeniaca) considerably enhances the enzyme activities (i.e., SOD, POD, and CAT), as well as osmo-protectants (soluble sugars and proline) compared with sensitive cultivar, which helps plants to withstand oxidative damage caused by cold stress. Additionally, differentially expressed genes were shown to be enriched in plant hormone signal transduction, ribosome, MAPK signaling, and circadian rhythm pathway. After 24 h of cold stress, genes related to PYL4, histidine kinase 1, SAUR36, bHLH130, bHLH123, TIFY 6B-like, WRKY 40, WRKY 57, and 60S acidic ribosomal protein P1 were differentially expressed, implying that these DEGs involved in multiple pathways are involved in cold tolerance in Japanese apricot. This study improved our current understanding of the mechanism of cold tolerance in Japanese apricot, and the findings could be utilized for other related fruit species.

Funder

National Key Research and development Program of China

Jiangsu Belt and Road innovation cooperation project: Cooperative development of overseas application of molecular breeding technology in horticultural crops

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3