High NH4+/NO3− Ratio Inhibits the Growth and Nitrogen Uptake of Chinese Kale at the Late Growth Stage by Ammonia Toxicity

Author:

Wang Yudan,Zhang Xiaoyun,Liu Houcheng,Sun Guangwen,Song ShiweiORCID,Chen Riyuan

Abstract

The aim of this study was to determine the effects of various NH4+/NO3− ratios in a nutrient solution on the growth and nitrogen uptake of Chinese kale under hydroponic conditions. The four NH4+/NO3− ratios in the nutrient solution were CK (0/100), T1 (10/90), T2 (25/75), and T3 (50/50). An appropriate NH4+/NO3− ratio (10/90, 25/75) promoted the growth of Chinese kale. T2 produced the highest fresh and dry weight among treatments, and all indices of seedling root growth were the highest under T2. A high NH4+/NO3− ratio (50/50) promoted the growth of Chinese kale seedlings at the early stage but inhibited growth at the late growth stage. At harvest, the nutrient solution showed acidity. The pH value was the lowest in T3, whereas NH4+ and NH4+/NO3− ratios were the highest, which caused ammonium toxicity. Total N accumulation and N use efficiency were the highest in T2, and total N accumulation was the lowest in T3. Principal component analysis showed that T2 considerably promoted growth and N absorption of Chinese kale, whereas T3 had a remarkable effect on the pH value. These findings suggest that an appropriate increase in NH4+ promotes the growth and nutrient uptake of Chinese kale by maintaining the pH value and NH4+/NO3− ratios of the nutrient solution, whereas excessive addition of NH4+ may induce rhizosphere acidification and ammonia toxicity, inhibiting plant growth.

Funder

Key‐Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3