Heterosis and Combining Ability for Fruit Yield, Sweetness, β-Carotene, Ascorbic Acid, Firmness and Fusarium Wilt Resistance in Muskmelon (Cucumis melo L.) Involving Genetic Male Sterile Lines

Author:

Kaur Simranpreet,Sharma Sat PalORCID,Sarao Navraj Kaur,Deol Jaideep Kaur,Gill Rupeet,Abd-Elsalam Kamel A.,Alghuthaymi Mousa A.,Hassan Mohamed M.ORCID,Chawla Neena

Abstract

Ten genetically diverse inbred lines, including two genic male sterile lines, of muskmelon (Cucumis melo L.) were crossed in a half-diallel to generate 45 F1 hybrids. These hybrids, along with the parental lines and commercial check, were evaluated for their fruit yield, level of phytochemicals and Fusarium wilt resistance. Both additive and non-additive genetic variances were important in governing the expression of all of the traits; however, the additive gene action for the fruit weight (g), flesh thickness (cm), rind thickness (mm), firmness (lb inch−2), β-carotene content (mg/100 g), non-additive variance for fruit yield (t ha−1), fruit number, total soluble solids (TSS, °Brix), ascorbic acid (mg/100 g) and reaction to Fusarium wilt were comparatively more important. The parental line MM-625 was the best general combiner for fruit yield, rind thickness and β-carotene content (mg/100 g). The exotic line Riogold was the best combiner for flesh thickness and firmness. The netted inbred line MM-610 was the best general combiner for fruit weight, ascorbic acid and reaction to Fusarium wilt. The inbred lines KP4HM-15 and MM-916 were the best general combiners for the number of fruits per vine and TSS. The best cross-combinations for fruit yield ha−1 and TSS were MS-1×M-610 and Kajri×MM-904, respectively. The hybrids KP4HM-15×MM Sel-103 and KP4HM-15×MM-1831 recorded the highest standard heterosis for fruit yield and TSS. The landrace-derived inbred lines Kajri, MM Sel-103 and KP4HM-15 produced moderate-to-highly FW-resistant hybrids. Out of the 121 SSR markers applied, 70 exhibited parental polymorphism. The markers DM0561, CMAAAGN14, TJ147, CMMS35_3, CMAGN45 and DE1337 identified specific/unique alleles in certain parental genotypes. Thus, the findings of this study revealed that the novel inbred lines can effectively be combined to generate heterotic F1 hybrids for yield and other traits, such as rind and flesh thickness, TSS, β-carotene content and firmness. Furthermore, SSR markers can potentially be utilized to confirm the genetic diversity among the parental lines, and for the DNA fingerprinting of F1 hybrids.

Funder

Department of Biotechnology, GoI, New Delhi under Accelerated Translational Grant for Com-mercialization

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3