Assessing the Potential of Sentinel-2 Derived Vegetation Indices to Retrieve Phenological Stages of Mango in Ghana

Author:

Torgbor Benjamin AdjahORCID,Rahman Muhammad MoshiurORCID,Robson AndrewORCID,Brinkhoff JamesORCID,Khan Azeem

Abstract

In 2020, mango (Mangifera indica) exports contributed over 40 million tons, worth around US$20 billion, to the global economy. Only 10% of this contribution was made from African countries including Ghana, largely due to lower investment in the sector and general paucity of research into the mango value chain, especially production, quality and volume. Considering the global economic importance of mango coupled with the gap in the use of the remote sensing technology in the sector, this study tested the hypothesis that phenological stages of mango can be retrieved from Sentinel-2 (S2) derived time series vegetation indices (VIs) data. The study was conducted on four mango farms in the Yilo Krobo Municipal Area of Ghana. Seasonal (temporal) growth curves using four VIs (NDVI, GNDVI, EVI and SAVI) for the period from 2017 to 2020 were derived for each of the selected orchards and then aligned with five known phenology stages: Flowering/Fruitset (F/FS), Fruit Development (FRD), Maturity/Harvesting (M/H), Flushing (FLU) and Dormancy (D). The significance of the variation “within” and “between” farms obtained from the VI metrics of the S2 data were tested using single-factor and two-factor analysis of variance (ANOVA). Furthermore, to identify which specific variable pairs (phenology stages) were significantly different, a Tukey honest significant difference (HSD) post-hoc test was conducted, following the results of the ANOVA. Whilst it was possible to differentiate the phenological stages using all the four VIs, EVI was found to be the best related with p < 0.05 for most of the studied farms. A distinct annual trend was identified with a peak in June/July and troughs in December/January. The derivation of remote sensing based ‘time series’ growth profiles for commercial mango orchards supports the ‘benchmarking’ of annual and seasonal orchard performance and therefore offers a near ‘real time’ technology for identifying significant variations resulting from pest and disease incursions and the potential impacts of seasonal weather variations.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference83 articles.

1. Monitoring the Foliar Nutrients Status of Mango Using Spectroscopy-Based Spectral Indices and PLSR-Combined Machine Learning Models

2. Food and Agriculture Organization of the United Nations (FAO), FAO Statistic Database,2021

3. The current status of mango farming business in Ghana: A case study of mango farming in the Dangme West District;Okorley;Ghana J. Agric. Sci.,2014

4. Major Tropical Fruits Market Review 2017;Altendorf,2019

5. Mango production, global trade, consumption trends, and postharvest processing and nutrition;Evans,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3