Integrating Greenhouse Cherry Tomato Production with Biofloc Tilapia Production

Author:

Pickens Jeremy M.,Danaher Jason J.ORCID,Sibley Jeff L.,Chappell Jesse A.,Hanson Terry R.ORCID

Abstract

Integration of intensive aquaculture systems with greenhouse plant production has been shown to improve aquaculture water quality conditions and improve plant nutrient use efficiency. The majority of the focus of integrated systems has involved raft culture or true hydroponics. Little work has been done on soilless culture utilizing drip irrigation. This study investigates the feasibility of integrating biofloc Nile tilapia (Oreochromis niloticus) production with greenhouse cherry tomato production (Solanum lycopersicum var. cerasiforme). Nile tilapia (157 g/fish) were stocked at 40 fish/m3 and grown for 149 days. The cherry tomato cvs. “Favorita” and “Goldita” were grown with aquaculture effluent (AE) waste and compared to plants grown with conventional fertilizer (CF) in soilless culture. Plants were grown for 157 days. Few differences in yield occurred between treatments until fish harvest (117 DAT). Post fish harvest, there was an 18.4% difference in total yield between CF and AE at crop termination for “Favorita”. Differences in yield between AE and CF were observed for “Goldita” at fish harvest (117 DAT) and crop termination (157 DAT). Results from this study suggest the potential for successful integration of cherry tomato grown in a substrate-based system with AE from a tilapia biofloc production system.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3