Abstract
Crop production in arid regions requires continuous irrigation to fulfill water demand throughout the growing season. Agronomic measures, such as roots-soil microorganisms, including arbuscular mycorrhizal (AM) fungi, have emerged in recent years to overcome soil constraints and improve water use efficiency (WUE). Eggplant plants were exposed to varying water stress under inoculated (AM+) and non-inoculated (AM−) to evaluate yield performance along with plant physiological status. Plants grown under full irrigation resulted in the highest fruit yield, and there were significant reductions in total yield and yield components when applying less water. The decline in fruit yield was due to the reduction in the number of fruits rather than the weight of the fruit per plant. AM+ plants showed more favorable growth conditions, which translated into better crop yield, total dry biomass, and number of fruits under all irrigation treatments. The fruit yield did not differ between full irrigation and 80% evapotranspiration (ET) restoration with AM+, but a 20% reduction in irrigation water was achieved. Water use efficiency (WUE) was negatively affected by deficit irrigation, particularly at 40% ET, when the water deficit severely depressed fruit yield. Yield response factor (Ky) showed a lower tolerance with a value higher than 1, with a persistent drop in WUE suggesting a lower tolerance to water deficits. The (Ky) factor was relatively lower with AM+ than with AM− for the total fruit yield and dry biomass (Kss), indicating that AM may enhance the drought tolerance of the crop. Plants with AM+ had a higher uptake of N and P in shoots and fruits, higher stomatal conductance (gs), and higher photosynthetic rates (Pn), regardless of drought severity. Soil with AM+ had higher extractable N, P, and organic carbon (OC), indicating an improvement of the fertility status in coping with a limited water supply.
Subject
Horticulture,Plant Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献