Transcriptome Analysis of Ethylene Response in Chrysanthemum moriflolium Ramat. with an Emphasis on Flowering Delay

Author:

Cheng Hua1,Zhou Min1,Si Yuyang1,Li Wenjie1,Wang Likai1ORCID,Chen Sumei1,Chen Fadi1,Jiang Jiafu1ORCID

Affiliation:

1. State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Ethylene is a gaseous phytohormone that delays flowering in Chrysanthemum morifolium Ramat. To date, however, there have been no systematic studies on genes involved in the ethylene response of this species, and the mechanism underlying ethylene-delayed flowering remains unclear. Herein, we applied RNA sequencing to characterize the ethylene response by comparing the transcriptomes of chrysanthemum cultivar ‘Jinba’ with or without ethephon treatment. Six unique RNA-seq libraries were generated. The identified differentially expressed genes (DEGs) primarily involved ethylene, auxin, and abscisic acid signaling genes; circadian clock genes; genes encoding functional proteins associated with floral transition, such as homologs of AP1/FRUITFUL-like 1 (AFL1), TERMINAL FLOWER 1 (TFL1), and so on; and genes encoding transcription factors, specifically of the MYB and bHLH families. Furthermore, quantitative RT-PCR was used to verify the DEGs identified by RNA-seq. Heterologous CmAFL1 overexpression in Arabidopsis thaliana resulted in early flowering. Our findings present a landscape of transcriptomes and reveal the candidate genes involved in the ethylene-mediated regulation of flowering time in chrysanthemum, providing useful data for further studies.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3