13 Cycles of Consecutive Tomato Monoculture Cropping Alter Soil Chemical Properties and Soil Fungal Community in Solar Greenhouse

Author:

Fu Hongdan123,Guo Meiqi123,Shan Xuan123,Zhang Xiaolan123,Sun Zhouping123,Liu Yufeng123,Li Tianlai123

Affiliation:

1. College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China

2. Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China

3. National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China

Abstract

Consecutive tomato monoculture cropping (CTM) obstacles severely restrict the development of facility tomato industry in China. However, the effect of CTM on the soil fungal community in greenhouses is still unclear. Here, we aim to identify the variation of soil chemical properties and soil fungal community associated with CTM for 1, 3, 5, 9 and 13 cycles. The results indicated that CTM led to a significant increase in soil total phosphorus (TP) and soil electrical conductivity (EC) value. CTM, though, significantly increased soil fungal community diversity, yet also led to the imbalance of soil fungal community compositions. Specifically, a beneficial soil fungus, Chaetomiaceae, decreased significantly at CTM13, while several soil pathogenic fungi, including Fusarium and Cladosporium, increased significantly at CTM13. A redundancy analysis (RDA) indicated that soil EC value, pH and TP had a greater impact on soil fungal community structure. Structural-equation-model (SEM) analysis indicated that, when compared with CTM3–CTM9, the decline of tomato fruit fresh weight per plant (TFFW) at CTM13 might be related to the significant increase in soil EC value, soil Fusarium and Cladosporium. Thus, appropriately decreasing soil EC and soil pathogenic fungi and enhancing soil beneficial fungi under a CTM system is crucially important for sustainable tomato production in greenhouses.

Funder

China Agri-culture Research System

Educational Department of Liaoning Province

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3