Growth, Anatomical, and Biochemical Responses of the Space Farming Candidate Brassica rapa L. Microgreens to Low-LET Ionizing Radiation

Author:

De Francesco Sara1ORCID,Amitrano Chiara1ORCID,Vitale Ermenegilda2ORCID,Costanzo Giulia2,Pugliese Mariagabriella3ORCID,Arrichiello Cecilia4,Ametrano Gianluca4,Muto Paolo4,Arena Carmen25ORCID,De Micco Veronica1ORCID

Affiliation:

1. Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy

2. Department of Biology, University of Naples Federico II, 80126 Naples, Italy

3. Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy

4. Radiotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy

5. NBFC—National Biodiversity Future Center, 90133 Palermo, Italy

Abstract

An adequate and balanced diet is fundamental in preserving the health of astronauts from several space-induced diseases. Therefore, the integration of a diet with fresh food, rich in bioactive compounds such as microgreens produced directly onboard, may be useful in space for human nutrition. However, ionizing radiation (IR) in space represents a significant hindrance for organisms, with potential critical outcomes on plant morpho-anatomical, eco-physiological, and biochemical aspects, depending on the plant and IR features (e.g., species, developmental stage, IR dose, and type). In this study, we analyzed the effect of different doses of X-rays (0-control, 0.3, 1, 10, 20, and 30 Gy) on the morpho-anatomical and nutritional traits of microgreens of Brassica rapa L., irradiated at the stage of germinated seeds. After the irradiation, microgreens were cultivated in controlled conditions. At harvest, the morpho-biometric traits were analyzed, along with the leaf functional anatomical traits and the phytochemical content of the aboveground biomass. The results showed that X-ray exposure does not induce detrimental effects on growth, while it stimulates the production of antioxidants, improving plant defense and nutritional value. The overall results support the idea of using this species in space as a supplemental functional food.

Funder

Italian Space Agency

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3