Three Different Fertilizers Enhance Spinach Growth and Reduce Spinach Cd Concentration in Cd Contaminated Alkaline Soil

Author:

Pan Yingjie12,Xu Xiangnan13,Lang Qianqian1,Liao Shangqiang1,Li Yanmei1

Affiliation:

1. Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

2. College of Life Science, Shenyang Normal University, Shenyang 110034, China

3. College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, Yangling 712100, China

Abstract

In order to investigate the impact of peach branch derived fertilizer (PB), cow manure derived fertilizer (CM) and silicon liquid fertilizer (Si) on the growth and Cd uptake of the Spinacia oleracea L. in the Cd contaminated soil, a pot experiment was conducted. The fertilizers were applied with low (L), medium (M) or high (H) levels, leading to nine treatments and a control group (CK). As a result, compared to CK, PB increased shoot dry mass by 15 to 46% and reduced shoot Cd by 19 to 56%; CM increased shoot dry mass by 6.1 to 162% and reduced shoot Cd by 38 to 55%; Si showed no effect on plant biomass but significantly reduced the root Cd bioconcentration factor. The CMM and CMH significantly reduced soil-available Cd by 6.5 and 7.5%, respectively, compared to CK. The CM enhanced the plant biomass dilution of Cd and decreased soil-available Cd, but led to higher total shoot Cd accumulation. PB led to simultaneous decline of the shoot Cd and total shoot Cd accumulation, indicating a stronger plant Cd “rejection” effect, independent from biomass accumulation. Si reduced plant root Cd with the sacrifice of biomass accumulation.

Funder

Creative Youth Talents Fund of Beijing Academy of Agriculture and Forestry Sciences

Projects of Joint Task on Prevention and Control of Heavy metal Pollution in Arable Land of Ministry of Agriculture and Rural Affairs

Beijing Innovation Team of the Modern Agricultural Research System

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3