Morphological, Phytochemical, and Photosynthetic Performance of Grafted Tomato Seedlings in Response to Different LED Light Qualities under Protected Cultivation

Author:

Soltani Seyedreza1,Arouiee Hossein1,Salehi Reza2ORCID,Nemati Seyed Hossein1,Moosavi-Nezhad Moein34ORCID,Gruda Nazim S.5ORCID,Aliniaeifard Sasan4ORCID

Affiliation:

1. Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran

2. Department of Horticultural Sciences, Campus of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran

3. Department of Horticultural Sciences, North Carolina State University, Raleigh, NC 27695, USA

4. Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran 33916-53755, Iran

5. Department of Horticultural Science, INRES–Institute of Crop Science and Resource Conservation, University of Bonn, 53121 Bonn, Germany

Abstract

Healing and acclimatization are critical in vegetable grafting under controlled environments. Here, we investigated the impacts of LED light qualities on the morphological traits and photosynthetic performance of grafted tomato seedlings. Seeds of the tomatoes “DRW 7806 F1” and “Maxifort” (Solanum lycopersicum × Solanum habrochaites) used as scion and rootstock were planted in 104-cell plug trays into a mixture of cocopeat and perlite (volume ratio: 3 to 1). Survival ratio, above- and underground growth, photosynthetic performance, soluble carbohydrate content, pigmentation, and antioxidant enzymes activity were evaluated following 20 days of exposure to different light qualities, including white (35% B, 49% intermediate spectra, 16% R) light as control, blue, red, and a combination of red (68%) and blue with the same light intensity of 75 ± 5 µmol m−2 s−1. The lowest scion diameter, leaf area, root and shoot dry weight, SPAD value, and the highest scion length and amount of soluble carbohydrate were detected in R-exposed seedlings. Moreover, R-exposed seedlings showed leaf epinasty and reduced photosynthetic performance. On the other hand, RB-exposed seedlings showed the highest leaf area, shoot and root dry weight, plant fresh and dry weight, scion stem diameter and photosystem II efficiency. In addition, superoxide dismutase activity was increased in R-exposed seedlings, while guaiacol peroxidase activity was enhanced in seedlings grown in RB. In conclusion, a combination of R and B is suggested as the suitable light spectrum to promote plant growth and photosynthetic performance in grafted tomato seedlings.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3