Precision Crop Load Management of Apple (Malus x domestica Borkh.) without Chemicals

Author:

Bound Sally

Abstract

Fruit thinning is an important management practice in commercial apple production. The standard industry practice for crop load management in many countries is based on bloom and/or post-bloom chemical thinning (CT) followed up with hand thinning. However, the response to CT is unpredictable and there is an increasing awareness of the environmental impact of many chemicals. Hence there is a need to find alternate environmentally acceptable methods for managing crop load. Artificial bud extinction (ABE), a thinning method that imitates natural bud extinction by manually removing buds before bud break, has been suggested as a potential tool to replace chemical thinning, but there have been no studies comparing ABE and chemical thinning. Trials were established in Tasmania, Australia to determine how ABE technology compares with best practice CT programs in terms of yield, fruit quality, and cost of implementation. Results from these trials demonstrated consistent fruit set of both Gala and Fuji apple under ABE management compared with conventional management. Fruit weight was increased in all ABE treatments from 5% up to 38%. The four studies presented here have demonstrated that ABE is a feasible alternative to chemical thinning, improving reliability of crop load management with increased predictability of fruit size and yield. Trees are significantly thinned before flowering, controlling biennial bearing. In addition, bud position is optimised, fruit is well spaced and light distribution into the canopy is enhanced. In terms of costs, implementation of ABE is comparable to managing crop load with CT programs but has the advantage that crop load management costs reduce in subsequent years after the initial tree set-up. ABE is also suitable for use in organic apple orchards.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3