HLNet Model and Application in Crop Leaf Diseases Identification

Author:

Xu YanleiORCID,Kong ShuolinORCID,Gao ZongmeiORCID,Chen QingyuanORCID,Jiao Yubin,Li ChenxiaoORCID

Abstract

Crop disease has been a severe issue for agriculture, causing economic loss for growers. Thus, disease identification urgently needs to be addressed, especially for precision agriculture. As of today, deep learning has been widely used for crop disease identification combined with optical imaging sensors. In this study, a lightweight convolutional neural network model is designed and validated on two publicly available imaging datasets and one self-built dataset with 28 types of leaf and leaf disease images of 6 crops as the research object. This model is an improvement of the existing convolutional neural network, reducing the floating-point operations by 65%. In addition, dilated depth-wise convolutions were used to increase the network receptive field and improve the model recognition accuracy without affecting the network computational speed. Meanwhile, two attention mechanisms are optimized to reduce attention module computation, improving the capability of the model to select the correct regions of interest. After training, this model achieved an average accuracy of 99.86%, and the image calculation speed was 0.173 s. Comparing with 11 backbone models and 5 latest crop leaf disease identification studies, the proposed model achieved the highest accuracy. Therefore, this model with an advantage of balancing between the calculation speed and recognition accuracy. Furthermore, the proposed model provides a theoretical basis and technical support for the practical application and mobile terminal applications of crop disease recognition in precision agriculture.

Funder

National Natural Science Foundation of China

JiLin provincial science and technology department international exchange and cooperation project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3