Online Quantitative Analysis of Perception Uncertainty Based on High-Definition Map

Author:

Yang Mingliang1,Jiao Xinyu1,Jiang Kun1,Cheng Qian1,Yang Yanding1,Yang Mengmeng1,Yang Diange1

Affiliation:

1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

Abstract

Environmental perception plays a fundamental role in decision-making and is crucial for ensuring the safety of autonomous driving. A pressing challenge is the online evaluation of perception uncertainty, a crucial step towards ensuring the safety and the industrialization of autonomous driving. High-definition maps offer precise information about static elements on the road, along with their topological relationships. As a result, the map can provide valuable prior information for assessing the uncertainty associated with static elements. In this paper, a method for evaluating perception uncertainty online, encompassing both static and dynamic elements, is introduced based on the high-definition map. The proposed method is as follows: Firstly, the uncertainty of static elements in perception, including the uncertainty of their existence and spatial information, was assessed based on the spatial and topological features of the static environmental elements; secondly, an online assessment model for the uncertainty of dynamic elements in perception was constructed. The online evaluation of the static element uncertainty was utilized to infer the dynamic element uncertainty, and then a model for recognizing the driving scenario and weather conditions was constructed to identify the triggering factors of uncertainty in real-time perception during autonomous driving operations, which can further optimize the online assessment model for perception uncertainty. The verification results on the nuScenes dataset show that our uncertainty assessment method based on a high-definition map effectively evaluates the real-time perception results’ performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Automated vehicles industry survey of transportation infrastructure needs;Wang;Transp. Res. Rec.,2022

2. Autonomous vehicles in 5G and beyond: A survey;Hakak;Veh. Commun.,2023

3. SOTIF-Oriented Perception Evaluation Method for Forward Obstacle Detection of Autonomous Vehicles;Chu;IEEE Syst. J.,2023

4. Jiang, K., Shi, Y., Wijaya, B., Yang, M., Wen, T., Xiao, Z., and Yang, D. (2022). Map Container: A Map-based Framework for Cooperative Perception. arXiv.

5. Autonomous vehicle perception: The technology of today and tomorrow;Gruyer;Transp. Res. Part Emerg. Technol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3