A Neuroevolutionary Model to Estimate the Tensile Strength of Manufactured Parts Made by 3D Printing

Author:

Silva Matheus Alencar da,Amaro Junior Bonfim,Medeiros Ramon Rudá Brito,Pinheiro Plácido RogérioORCID

Abstract

Three-dimensional printing has advantages, such as an excellent flexibility in producing parts from the digital model, enabling the fabrication of different geometries that are both simple or complex, using low-cost materials and generating little residue. Many technologies have gained space, highlighting the artificial intelligence (AI), which has several applications in different areas of knowledge and can be defined as any technology that allows a system to demonstrate human intelligence. In this context, machine learning uses artificial intelligence to develop computational techniques, aiming to build knowledge automatically. This system is responsible for making decisions based on experiences accumulated through successful solutions. Thus, this work aims to develop a neuroevolutionary model using artificial intelligence techniques, specifically neural networks and genetic algorithms, to predict the tensile strength in materials manufactured by fused filament fabrication (FFF)-type 3D printing. We consider the collection and construction of a database on three-dimensional instances to reach our objective. To train our model, we adopted some parameters. The model algorithm was developed in the Python programming language. After analyzing the data and graphics generated by the execution of the tests, we present that the model outperformed, with a determination coefficient superior to 90%, resulting in a high rate of assertiveness.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3