Modelling Cross-Docking in a Three-Level Supply Chain with Stochastic Service and Queuing System: MOWFA Algorithm

Author:

Rostami Parinaz,Avakh Darestani Soroush,Movassaghi Mitra

Abstract

In today’s competitive world, it is essential to provide a new method through which maximum efficiency can be created in the production and supply cycle. In many production environments, sending goods directly from the producer to the consumer brings many problems. Therefore, an efficient transport system should be established between producers and consumers. Such a system is designed in the field of supply chain management knowledge. Supply chain management is the evolutionary result of warehousing management and is one of the important infrastructural foundations of business implementation, in many of which the main effort is to shorten the time between the customer’s order and the actual delivery of the goods. In this research, the supply chain consists of three levels. Suppliers are placed on the first level, cross-docks on the second level, and factories on the third level. In this system, a number of suppliers send different raw materials to several different cross-docks. Each channel is assigned to a cross-dock for a specific product. The main goal of this article is to focus on optimizing the planning of incoming and outgoing trucks with the aim of minimizing the total operation time within the supply chain. The arrival rate of goods from suppliers to the cross-dock is stochastic with a general probability distribution. On the other hand, the time required to prepare and send the goods is random with a general probability distribution. The service time in each cross-dock depends on the number of its doors. Therefore, each cross-dock can be modeled as a G/G/m queueing system where m represents the number of doors. The mathematical model of the research has been developed based on these assumptions. Since the problem is NP-hard, the time to solve it increases drastically with the increase in the dimensions of the problem. Therefore, three metaheuristics, including multi-objective water flow, non-dominated sorting genetic, and a multi-objective simulated annealing algorithm have been used to find near-optimal solutions to the problem. After adjusting the parameters of the algorithms using the Taguchi method, the results obtained from the algorithms were analyzed with a statistical test and the performance of the algorithms was evaluated. The results vividly demonstrate that non-dominated sorting genetics is the best of all.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3