Abstract
Full-duplex (FD) is a promising technology for increasing the spectral efficiency of next-generation wireless communication systems. A major technical challenge in enabling FD in a real network is to remove the self-interference (SI) caused by simultaneous transmission and reception at the transceiver, and the SI cancellation performance depends significantly on the estimation accuracy of the SI channel. In this study, we proposed a novel partial SI channel training method for minimizing the residual SI power for FD massive multiple-input multiple-output (MIMO) systems. Based on an SI channel training framework under a limited training overhead, using the proposed scheme, the BS estimates only a part of the SI channel vectors, while skipping the channel training for the other remaining SI channel vectors by using their last estimates. With this partial training framework, the proposed scheme finds the optimal partial SI channel training strategy for pilot allocation to minimize the expected residual SI power, considering the time-varying Rician fading channel model for the SI channel. Therefore, the proposed scheme can improve the sum-rate performance compared with other simple partial training schemes for FD massive MIMO systems under a limited training overhead. Numerical results confirm the effectiveness of the proposed scheme for FD massive MIMO systems compared with the full training scheme, as well as other partial training schemes.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献