Experimental and Numerical Study on the Dynamic Thermal Response of Building Interior Decoration Coatings during Intermittent Air-Conditioning in High U-Values Buildings in China

Author:

Li YanruORCID,Chen Yong,Zhang Lili,Li Xinyi

Abstract

Interior decorating coatings (IDCs) are the heat-transfer medium between indoor air and building walls, which mainly form the cooling load and are important in an indoor built environment. To explore the impacts of the precooling process of IDCs on indoor thermal environment of occupants during intermittent air conditioning, this paper investigated the dynamic thermal response of IDCs. Three representative coating materials were integrated to the external insulation wall and internal insulation wall, and their interior surface temperatures were experimentally tested under intermittent air conditioning operation in southern China. Moreover, a heat transfer model was established and verified to analyze the influences of IDC on the thermal response of the interior surface. During the pull-down process, the cold was accumulated in the IDC layer with small thermal diffusivity and could not be transferred into the wall inside, so that the largest temperature reduction was obtained, meaning that the indoor thermal environment could meet the setpoint in a short time. According to modelling calculations, the thick IDC with volumetric specific heat capacity less than 1 × 105 J/(m3·K) and small thermal conductivity integrated to the internal insulation wall was beneficial to increase the thermal response rate and had the better energy-saving efficiency.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3