Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption

Author:

Kierzkowski ArturORCID,Haładyn SzymonORCID

Abstract

The paper aims to propose a method of reconfiguring the train timetable, taking into account minimising the globally consumed energy for traction purposes. This is a very important issue in the context of rising electricity prices, alarming climate changes and the “Fit for 55” policy introduced in Europe. Each unit of energy saved contributes to improving the state of the planet and reducing the negative human impact on it. In this paper, the authors propose a model that, when applied, will reconfigure the timetable in terms of energy intensity and, as a result, reduce the impact of railways on the burden on the environment. It is proposed to introduce an interdependence between trajectories of electrical train movement. This interdependence is to take place so that it is possible to efficiently transfer the energy recovered during the braking of one train to another train, moving on the same section of the railway line and at the same time (i.e., without using energy storage devices). The paper provides a physical background to the considerations—discussing the movement of electric trains in the context of their energy intensity and the possibility of energy recovery; presenting the possibility of interconnecting trains in such a way that the energy from a train that is being braked can be efficiently used by a train that is being accelerated; presenting a method for making the linkages between trains (in the form of an original algorithm resulting from the application of the Delphi method) and implementing them in the timetable. The timetable for the application of the method is real and was obtained from the railway operator in Poland, as a mathematical–physical model describing the trajectory and energy consumption of the original, after which the proposed timetable was verified by running simulations and comparing the energy consumption of the original and the proposed timetable. It turned out that it is possible to achieve a global total energy demand reduction of up to 398 MWh/year. This proves the validity of using the proposed algorithm at the timetabling stage and extending its implementation to the entire network. Furthermore the authors also recognise the tendency of the algorithm to return repeatable solutions, which has the side effect of creating a cyclic timetable. Its implementation in Poland has proved impossible for many years. The application of the proposed method could change this unfavourable situation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. Comparing emission estimation models for rail freight transportation

2. Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the Deployment of Alternative Fuels Infrastructure,2021

3. The Future of Rail: Opportunities for Energy and the Environmenthttps://www.iea.org/reports/the-future-of-rail

4. 144 Wight Paper: Roadmap to a Single European Transport Area—Towards a Competitive and Resource Efficient Transport System,2011

5. Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3