Investigating the Effect of Rock Bridge on the Stability of Locked Section Slopes by the Direct Shear Test and Acoustic Emission Technique

Author:

Guo Qifeng,Pan JiliangORCID,Cai Meifeng,Zhang Ying

Abstract

As a portion of intact rock separating joint surfaces, rock bridge plays a significant role in the stability of rock slopes. This paper aims to investigate the effect of different rock bridges on the mechanical properties and failure mode of rock slope by means of the direct shear test and acoustic emission technique. Field conditions were simulated in direct shear tests which were carried out on specimens with rock bridges at different continuity rates, normal stress, arrangements, and joint angles. Experimental results indicate that the strength of specimens is controlled by the rock bridge and the structural plane. The rock bridge contributes to the strength of the specimen, while the through plane weakens the strength of the specimen. The increase of normal stress can weaken the stress concentration near the tip of the rock bridge and improve the shear resistance of the specimen. The different arrangement of rock bridge has little effect on the normal displacement of the specimen, and has a great influence on the shear strength. The shear capacity of the specimen is related to the angle of the crack, and the angle of the crack is approximately proportional to the peak shear strength. For the specimens with different joint occurrence, the mode of crack propagation at the initial stage is basically the same, and the specimen is finally damaged due to the generation of through cracks in the core area of rock bridge. The instantaneous release of the huge energy generated during the experiment along the shear direction is the root cause of the sudden failure of the rock bridge. The formation, aggregation, and transfixion process of rock bridge is of concern and has been experimentally investigated in this paper for the prevention and control of the locked section rock slope with sudden disasters.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3