Experimental Study on Heat Transfer Characteristics of Radiant Cooling and Heating

Author:

Chen Shengpeng1,Ma Xiaohui2,Han Chaoling1ORCID

Affiliation:

1. College of Emergency Management, Nanjing Tech University, Nanjing 210009, China

2. School of Energy and Environment, Southeast University, Nanjing 210096, China

Abstract

While traditional air conditioning systems serve their purpose, radiation air conditioning systems provide several benefits, including improved comfort, higher energy efficiency, and lower initial costs. Nevertheless, the heat exchange capacity per unit area of the radiation plate in such systems is somewhat restricted, which directly affects their practical engineering applications. To address this, experimental investigations were undertaken to examine the impact of cold/hot water supply temperature, water flow velocity, and surface emissivity of radiant panels on their heat transfer characteristics for both summer cooling and winter heating. The findings highlight the significant influence of water supply temperature, flow rate, and surface emissivity on the heat transfer properties of the radiant plates. It is worth noting that adjustments to the water flow rate and surface emissivity impose limitations on enhancing the radiant plate heat transfer performance. For instance, in summer, the heat transfer coefficient of the roughly machined light alumina plate radiant panel was determined by fitting the experimental heat transfer data against characteristic temperatures. Specifically, during cooling, the total heat transfer coefficient of the radiant plate was calculated as 6.77 W/(m2·K), comprising a thermal coefficient of 5.41 W/(m2·K) and a convective heat transfer coefficient of 4.17 W/(m2·K). Conversely, during winter heating, the total heat transfer coefficient of the radiant plate increased to 8.94 W/(m2·K), with a radiation heat transfer coefficient of 6.13 W/(m2·K) and a convective heat transfer coefficient of 3.79 W/(m2·K).

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3