Affiliation:
1. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
Abstract
Wind energy, as a key link in renewable energy, has seen its penetration in the power grid increase in recent years. In this context, accurate and reliable short-term wind power prediction is particularly important for the real-time scheduling and operation of power systems. However, many deep learning-based methods rely on the relationship between wind speed and wind power to build a prediction model. These methods tend to consider only the temporal features and ignore the spatial and frequency domain features of the wind power variables, resulting in poor prediction accuracy. In addition to this, existing power forecasts for wind farms are often based on the wind farm level, without considering the impact of individual turbines on the wind power forecast. Therefore, this paper proposes a wind power prediction model based on multi-feature domain learning (MFDnet). Firstly, the model captures the similarity between turbines using the latitude, longitude and wind speed of the turbines, and constructs a turbine group with similar features as input based on the nearest neighbor algorithm. On this basis, the Seq2Seq framework is utilized to achieve weighted fusion with temporal and spatial features in multi-feature domains through high-frequency feature extraction by DWT. Finally, the validity of the model is verified with data from a wind farm in the U.S. The results show that the overall performance of the model outperforms other wind farm power prediction algorithms, and reduces MAE by 25.5% and RMSE by 20.6% compared to the baseline persistence model in predicting the next hour of wind power.
Funder
Tianjin University of Technology