Flexural-Fatigue Properties of Sustainable Pervious Concrete Pavement Material Containing Ground Tire Rubber and Silica Fume

Author:

Liu Hanbing,Luo GuobaoORCID,Zhou Peilei,Wei Haibin,Li Wenjun,Yu Di

Abstract

With the development of urbanization, pervious concrete has been increasingly used in urban road pavement structures. The objective of this paper was to investigate the effect of stress levels and modifier (ground tire rubber and silica fume) on the fatigue life of pervious concrete and establish the fatigue equations with different survival probabilities. In order to improve the deformability of pervious concrete without sacrificing its strength, ground tire rubber and silica fume were added into pervious concrete. Two kinds of pervious concrete, control pervious concrete and ground tire rubber and silica fume modified pervious concrete, were made in the laboratory. The pervious concrete beam specimens of 100 × 100 × 400 mm were casted, and the static flexural strength and flexural strain of the two kinds of pervious concrete were tested. The fatigue lives of two pervious concretes were tested using MTS fatigue testing machine under four different stress levels (0.85, 0.80, 0.75, and 0.70). The fatigue life was analyzed by two-parameter Weibull distribution. The parameters of Weibull distribution were determined by graphical method, maximum likelihood method and moment method. The Kolmogorov–Smirnov test was used to test the Weibull distribution and the fatigue equations under different survival probabilities were established. The results showed that ground tire rubber and silica fume modified pervious concrete had better deformability while ensuring strength compared to control pervious concrete. The addition of ground tire rubber and silica fume improved the fatigue life of pervious concrete. The two-parameter Weibull distribution was suitable to characterize the fatigue characteristics and predict the fatigue life of pervious concrete. Fatigue equations with different survival probabilities were a good guide for pervious concrete design.

Funder

Science Technology Development Program of Jilin Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3