A Design Methodology Using Prototyping Based on the Digital-Physical Models in the Architectural Design Process

Author:

Kim Do Young

Abstract

In this study, a design methodology based on prototyping is proposed. This design methodology is intended to enhance the functionality of the test, differentiating it from the prototyping that is being conducted in conventional architectural design projects. The objective of this study is to explore reference cases that enable designers to maximize the utilization of both digital models and physical models that have been currently used in architectural designs. Also, it is to explore the complementary roles and effects of digital models and physical models. Smart Building Envelopes (SBEs) are one of challenging topics in architectural design and requires innovative design process included tests and risk management. A conceptual prototyping-based model considering the topic is applied to the design studio (education environment in university). Designing SBEs is not difficult to conceive ideas, but it is impossible to “implement” using the conventional design method. Implementing SBEs requires to strengthen validities and improve responsibilities of ideas in the stages of architectural designs, with cutting-edge technologies and smart materials. The design methodology enables designers (represented by students) to apply materials and manufacturing methods using digital models (parametric design, simulation, BIM) and physical models, rather than representing vanity images that are considered simple science fiction.

Funder

the Ministry of Land, Infrastructure, and Transport of the South Korean government

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference44 articles.

1. Industry 4.0 Report,2016

2. Harnessing the Fourth Industrial Revolution for Sustainable Emerging Cities,2017

3. It’s Alive: Can You Imagine the Urban Building of the Future;Hargrave,2013

4. Product Design and Development;Ulrich,2008

5. Product and Design Development;Ulrich,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3