Removal of Pb(II) from Acid Mine Drainage with Bentonite-Steel Slag Composite Particles

Author:

Zhan XinhuiORCID,Xiao Liping,Liang Bing

Abstract

Abandoned lead and zinc (Pb-Zn) mines around the world produce large amounts of acid mine drainage (AMD) containing Pb(II), which is toxic and accumulates in the environment and in living organisms. Bentonite-steel slag composite particles (BSC) are a new type of acid mine drainage (AMD) treatment material that can remove heavy metal ions and reduce acidity. To date, there have been no reports on the treatment of Pb(II)-containing AMD using BSC. Therefore, the effects of pH, reaction time, temperature, and Pb(II) concentration on the adsorption of Pb(II) onto BSC were studied. Moreover, the BSC before and after the reaction, as well as the precipitation after the reaction, were characterized by scanning electron microscopy and X-ray diffraction analyses. The effect of pH on the adsorption process is similar to that of the formation of soluble and insoluble hydrolysates of Pb(II) on pH. The adsorption mechanism includes ion exchange, complexation, precipitation, and synergistic adsorption–coagulation effect. Adsorption kinetics are best-fit with the pseudo-second order kinetics model ( R 2 > 0.98). Furthermore, the total adsorption rate is controlled by liquid film diffusion and in-particle diffusion, the liquid film diffusion rate being higher than the in-particle diffusion rate. The isothermal adsorption of Pb(II) onto BSC fit well with Langmuir and Brunauer Emmett Teller (BET) isotherms ( R 2 > 0.995), and both single layer adsorption and local multilayer adsorption were observed. Thermodynamic analysis revealed that the adsorption process is spontaneous and endothermic, and that the degree of freedom increases with time. In summary, this study provides a theoretical basis for the use of BSC in treating AMD containing Pb(II).

Funder

the National Natural Science Foundation of China

Key Project of Science and Technology Research of Education Department of Liaoning Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3