Biomass and Volume Modeling along with Carbon Concentration Variations of Short-Rotation Poplar Plantations

Author:

Dong LihuORCID,Widagdo Faris Rafi Almay,Xie Longfei,Li Fengri

Abstract

Short-rotation forestry is of interest to provide biomass for bioenergy and act as a carbon sink to mitigate global warming. The Poplar tree (Populus × xiaohei) is a fast-growing and high-yielding tree species in Northeast China. In this study, a total of 128 Populus × xiaohei trees from the Songnen Plain, Heilongjiang Province, Northeastern China, were harvested. Several available independent variables, such as tree diameter at breast height (D), tree’s total height (H), crown width (CW), and crown length (CL), were differently combined to develop three additive biomass model systems and eight stem volume models for Populus × xiaohei tree. Variance explained within the three additive biomass model systems ranged from 83% to 98%, which was lowest for the foliage models, and highest for the stem biomass models. Similar findings were found in the stem volume models, in which the models explained more than 94% of the variance. The additional predictors, such as H, CL, or CW, evidently enhanced the model fitting and performance for the total and components biomass along with the stem volume models. Furthermore, the biomass conversion and expansion factors (BCEFs) of the root (118.2 kg/m3), stem (380.2 kg/m3), branch (90.7 kg/m3), and foliage (31.2 kg/m3) were also calculated. The carbon concentrations of Populus × xiaohei in root, stem, branch, and foliage components were 45.98%, 47.74%, 48.32%, and 48.46%, respectively. Overall, the newly established models in this study provided complete and comprehensive tools for quantifying the biomass and stem volume of Populus × xiaohei, which might be essential to be specifically utilized in the Chinese National Forest Inventory.

Funder

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3