Tracking of Multiple Maneuvering Random Hypersurface Extended Objects Using High Resolution Sensors

Author:

Sun Lifan,Yu Haofang,Lan Jian,Fu Zhumu,He Zishu,Pu Jiexin

Abstract

With the increased resolution capability of modern sensors, an object should be considered as extended if the target extent is larger than the sensor resolution. Multiple maneuvering extended object tracking (MMEOT) uses not only measurements of the target centroid but also high-resolution sensor measurements which may resolve individual features or measurement sources. MMEOT aims to jointly estimate object number, centroid states, and extension states. However, unknown and time-varying maneuvers of multiple objects produce difficulties in terms of accurate estimation. For multiple maneuvering star-convex extended objects using random hypersurface models (RHMs) in particular, their complex maneuvering behaviors are difficult to be described accurately and handled effectively. To deal with these problems, this paper proposes an interacting multiple model Gaussian mixture probability hypothesis density (IMM-GMPHD) filter for multiple maneuvering extended object tracking. In this filter, linear maneuver models derived from RHMs are utilized to describe different turn maneuvers of star-convex extended objects accurately. Based on these, an IMM-GMPHD filtering recursive form is given by deriving new update and merging formulas of model probabilities for extended objects. Gaussian mixture components of different posterior intensities are also pruned and merged accurately. More importantly, the geometrical significance of object extension states is fully considered and exploited in this filter. This contributes to the accurate estimation of object extensions. Simulation results demonstrate the effectiveness of the proposed tracking approach—it can obtain the joint estimation of object number, kinematic states, and object extensions in complex maneuvering scenarios.

Funder

National Thirteen-Five Equipment Pre-Research Foundation of China

Aeronautical Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3