Non-Destructive Biomass Estimation in Mediterranean Alpha Steppes: Improving Traditional Methods for Measuring Dry and Green Fractions by Combining Proximal Remote Sensing Tools

Author:

Rodríguez-Lozano Borja,Rodríguez-Caballero EmilioORCID,Maggioli Lisa,Cantón YolandaORCID

Abstract

The Mediterranean region is experiencing a stronger warming effect than other regions, which has generated a cascade of negative impacts on productivity, biodiversity, and stability of the ecosystem. To monitor ecosystem status and dynamics, aboveground biomass (AGB) is a good indicator, being a surrogate of many ecosystem functions and services and one of the main terrestrial carbon pools. Thus, accurate methodologies for AGB estimation are needed. This has been traditionally done by performing direct field measurements. However, field-based methods, such as biomass harvesting, are destructive, expensive, and time consuming and only provide punctual information, not being appropriate for large scale applications. Here, we propose a new non-destructive methodology for monitoring the spatiotemporal dynamics of AGB and green biomass (GB) of M. tenacissima L. plants by combining structural information obtained from terrestrial laser scanner (TLS) point clouds and spectral information. Our results demonstrate that the three volume measurement methods derived from the TLS point clouds tested (3D convex hull, voxel, and raster surface models) improved the results obtained by traditional field-based measurements. (Adjust-R2 = 0.86–0.84 and RMSE = 927.3–960.2 g for AGB in OLS regressions and Adjust-R2 = 0.93 and RMSE = 376.6–385.1 g for AGB in gradient boosting regression). Among the approaches, the voxel model at 5 cm of spatial resolution provided the best results; however, differences with the 3D convex hull and raster surface-based models were very small. We also found that by combining TLS AGB estimations with spectral information, green and dry biomass fraction can be accurately measured (Adjust-R2 = 0.65–0.56 and RMSE = 149.96–166.87 g in OLS regressions and Adjust-R2 = 0.96–0.97 and RMSE = 46.1–49.8 g in gradient boosting regression), which is critical in heterogeneous Mediterranean ecosystems in which AGB largely varies in response to climatic fluctuations. Thus, our results represent important progress for the measurement of M. tenacissima L. biomass and dynamics, providing a promising tool for calibration and validation of further studies aimed at developing new methodologies for AGB estimation at ecosystem regional scales.

Funder

Junta de Andalucia with European Union funds for regional development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference119 articles.

1. Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests - A Review

2. Aboveground biomass and carbon stocks of tree species in tropical forests of Cachar District, Assam, Northest India;Borah;Int. J. Ecol. Environ. Sci.,2013

3. The relationships among aboveground biomass, primary productivity, precipitation and temperature in grazed aun ungrazed temperate grassland from northern turkey;Yalçin;Black Sea J. Eng. Sci.,2018

4. Impact of plant roots on the resistance of soils to erosion by water: a review

5. Positive relationship between species richness and aboveground biomass across forest strata in a primary Pinus kesiya forest

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3