Improved Gridded Precipitation Data Derived from Microwave Link Attenuation

Author:

Silver MichaORCID,Karnieli ArnonORCID,Fredj ErickORCID

Abstract

The motivation for improving gridded precipitation data lies in weather now-casting and flood forecasting. Therefore, over the past decade, Commercial Microwave Link (CML) attenuation data have been used to determine rain rates between microwave antennas, and to produce more accurate countrywide precipitation grids. CML networks offer a unique advantage for precipitation measurements due to their high density. However, these data experience uncertainty from several sources as reported in earlier research. This current work determines the reliability of rainfall measurements for each link by comparing CML-derived rain rates to adjusted weather radar rainfall at the link location, over three months. Dynamic Time Warping (DTW) is applied to the pair of CML/radar time-series data in two study areas, Israel and Netherlands. Based on the DTW amplitude and temporal distance, unreliable links are identified and flagged, and interpolated gridded precipitation data are derived in each country after filtering out those unreliable links. Correlations between CML-derived grids and rain observations from an independent set of gauges, tested over several rain events in both study areas, are higher for the reliable subset of CML than the full set. For certain storm events, the Kendall rank correlation for the set of reliable CML is almost double that of the complete set, demonstrating that improved gridded precipitation data can be obtained by removing unreliable links.

Funder

Karlsruhe Institute of Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3