Estimation of Paddy Rice Nitrogen Content and Accumulation Both at Leaf and Plant Levels from UAV Hyperspectral Imagery

Author:

Wang LiORCID,Chen ShuisenORCID,Li Dan,Wang ChongyangORCID,Jiang HaoORCID,Zheng Qiong,Peng Zhiping

Abstract

Remote sensing-based mapping of crop nitrogen (N) status is beneficial for precision N management over large geographic regions. Both leaf/canopy level nitrogen content and accumulation are valuable for crop nutrient diagnosis. However, previous studies mainly focused on leaf nitrogen content (LNC) estimation. The effects of growth stages on the modeling accuracy have not been widely discussed. This study aimed to estimate different paddy rice N traits—LNC, plant nitrogen content (PNC), leaf nitrogen accumulation (LNA) and plant nitrogen accumulation (PNA)—from unmanned aerial vehicle (UAV)-based hyperspectral images. Additionally, the effects of the growth stage were evaluated. Univariate regression models on vegetation indices (VIs), the traditional multivariate calibration method, partial least squares regression (PLSR) and modern machine learning (ML) methods, including artificial neural network (ANN), random forest (RF), and support vector machine (SVM), were evaluated both over the whole growing season and in each single growth stage (including the tillering, jointing, booting and heading growth stages). The results indicate that the correlation between the four nitrogen traits and the other three biochemical traits—leaf chlorophyll content, canopy chlorophyll content and aboveground biomass—are affected by the growth stage. Within a single growth stage, the performance of selected VIs is relatively constant. For the full-growth-stage models, the performance of the VI-based models is more diverse. For the full-growth-stage models, the transformed chlorophyll absorption in the reflectance index/optimized soil-adjusted vegetation index (TCARI/OSAVI) performs best for LNC, PNC and PNA estimation, while the three band vegetation index (TBVITian) performs best for LNA estimation. There are no obvious patterns regarding which method performs the best of the PLSR, ANN, RF and SVM in either the growth-stage-specific or full-growth-stage models. For the growth-stage-specific models, a lower mean relative error (MRE) and higher R2 can be acquired at the tillering and jointing growth stages. The PLSR and ML methods yield obviously better estimation accuracy for the full-growth-stage models than the VI-based models. For the growth-stage-specific models, the performance of VI-based models seems optimal and cannot be obviously surpassed. These results suggest that building linear regression models on VIs for paddy rice nitrogen traits estimation is still a reasonable choice when only a single growth stage is involved. However, when multiple growth stages are involved or missing the phenology information, using PLSR or ML methods is a better option.

Funder

GDAS' Project of Science and Technology Development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3