Morphology of Rain Clusters Influencing Rainfall Intensity over Hainan Island

Author:

Huang TingtingORCID,Ding Chenghui,Li Weibiao,Chen YilunORCID

Abstract

Continuous observations from geostationary satellites can show the morphology of precipitation cloud systems in quasi-real-time, but there are still large deviations in the inversion of precipitation. We used binary-connected area recognition technology to identify meso-β-scale rain clusters over Hainan Island from 1 June 2000 to 31 December 2018, based on Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM data. We defined and statistically analyzed the parameters of rain clusters to reveal the typical morphological and precipitation characteristics of rain clusters, and to explore the relationship between the parameters and rainfall intensity of rain clusters. We found that the area and long axis of rain clusters over land were larger than those over the ocean, and that continental rain clusters were usually square in shape. Rain clusters with a larger area and longer axis were concentrated on the northern side of the mountains on Hainan Island and the intensity of rain was larger on the northern and eastern sides of the mountains. The variation of continental rain clusters over time was more dramatic than the variation of oceanic clusters. The area and long axis of rain clusters was larger between 14:00 and 21:00 from April to September and the long axis of the oceanic rain clusters increased in winter. There were clear positive correlations between the area, long axis and shape of the rain clusters and the maximum rain rate. The area and long axis of continental rain clusters had a higher correlation with the rain rate than those of oceanic clusters. The establishment of a relationship between the morphology of rain clusters and precipitation helps us to understand the laws of precipitation and improve the prediction of precipitation in this region.

Funder

Weibiao Li

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3