Abstract
The sustainable management of fluvial systems requires reliable knowledge of the mechanisms that control the basins and their drainages, which in turn must be prioritized for the application of measures for flood-risk reduction. Thus, given the need to develop methodological frameworks capable of integrating remote sensing technologies at different scales, as well as traditional metrics and anthropic variables, in this study, a multiscale method is proposed for the characterization and prioritization of river stretches for fluvial risk management. This methodology involves the study of drivers at the watershed level, and a detailed morphometric and hydrogeomorphological analysis of the main channel for fluvial landscape classification, segmentation, and aggregation into units, considering also anthropic variables. Therefore, it includes the use of LiDAR data and exploration GIS tools, whose results are corroborated through fieldwork, where ephemeral and topographic evidence of fluvial dynamics are collected. The procedure is validated in the Carrión river basin, Palencia, Spain, where a high degree of maturity and geomorphological development are determined. Hence, the main channel can be classified into eight geomorphic units and divided into homogeneous segments, which, according to categorical elements such as urban interventions, are prioritized, obtaining, as a result, six stretches of main interest for river risk management.
Subject
General Earth and Planetary Sciences