Estimation of Pollutant Emissions in Real Driving Conditions Based on Data from OBD and Machine Learning

Author:

Rivera-Campoverde Néstor Diego,Muñoz-Sanz José Luis,Arenas-Ramirez Blanca del ValleORCID

Abstract

This article proposes a methodology for the estimation of emissions in real driving conditions, based on board diagnostics data and machine learning, since it has been detected that there are no models for estimating pollutants without large measurement campaigns. For this purpose, driving data are obtained by means of a data logger and emissions through a portable emissions measurement system in a real driving emissions test. The data obtained are used to train artificial neural networks that estimate emissions, having previously estimated the relative importance of variables through random forest techniques. Then, by the application of the K-means algorithm, labels are obtained to implement a classification tree and thereby determine the selected gear by the driver. These models were loaded with a data set generated covering 1218.19 km of driving. The results generated were compared to the ones obtained by applying the international vehicle emissions model and with the results of the real driving emissions test, showing evidence of similar results. The main contribution of this article is that the generated model is stronger in different traffic conditions and presents good results at the speed interval with small differences at low average driving speeds because more than half of the vehicle’s trip occurs in urban areas, in completely random driving conditions. These results can be useful for the estimation of emission factors with potential application in vehicular homologation processes and the estimation of vehicular emission inventories.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3