Author:
Tooley Christian,Gasperoni Charles,Marnoto Sabrina,Halpern Jeffrey
Abstract
Electrochemical detection of amino acids is important due to their correlation with certain diseases; however, most amino acids require a catalyst to electrochemically activate. One common catalyst for electrochemical detection of amino acids are metal oxides. Metal oxide nanoparticles were electrodeposited onto glassy carbon and platinum working electrodes. Cyclic voltammetry (CV) experiments in a flow cell were performed to evaluate the sensors’ ability to detect arginine, alanine, serine, and valine at micromolar and nanomolar concentrations as high as 4 mM. Solutions were prepared in phosphate buffer saline (PBS) and then 100 mM NaOH. Specifically, NiO surfaces were responsive to amino acids but variable, especially when exposed to arginine. Polarization resistance experiments and scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) data indicated that arginine accelerated the corrosion of the NiO catalyst through the formation of a Schiff base complex.
Funder
National Institutes of Health
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献