Development of Intelligent Fault Diagnosis Technique of Rotary Machine Element Bearing: A Machine Learning Approach

Author:

Saha Dip KumarORCID,Hoque Md. EmdadulORCID,Badihi HamedORCID

Abstract

The bearing is an essential component of a rotating machine. Sudden failure of the bearing may cause an unwanted breakdown of the manufacturing plant. In this paper, an intelligent fault diagnosis technique was developed to diagnose various faults that occur in a deep groove ball bearing. An experimental setup was designed and developed to generate faulty data in various conditions, such as inner race fault, outer race fault, and cage fault, along with the healthy condition. The time waveform of raw vibration data generated from the system was transformed into a frequency spectrum using the fast Fourier transform (FFT) method. These FFT signals were analyzed to detect the defective bearing. Another significant contribution of this paper is the application of a machine learning (ML) algorithm to diagnose bearing faults. The support vector machine (SVM) was used as the primary algorithm. As the efficiency of SVM heavily depends on hyperparameter tuning and optimum feature selection, the particle swarm optimization (PSO) technique was used to improve the model performance. The classification accuracy obtained using SVM with a traditional grid search cross-validation (CV) optimizer was 92%, whereas the improved accuracy using the PSO-based SVM was found to be 93.9%. The developed model was also compared with other traditional ML techniques such as k-nearest neighbor (KNN), decision tree (DT), and linear discriminant analysis (LDA). In every case, the proposed model outperformed the existing algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3