Abstract
The bearing is an essential component of a rotating machine. Sudden failure of the bearing may cause an unwanted breakdown of the manufacturing plant. In this paper, an intelligent fault diagnosis technique was developed to diagnose various faults that occur in a deep groove ball bearing. An experimental setup was designed and developed to generate faulty data in various conditions, such as inner race fault, outer race fault, and cage fault, along with the healthy condition. The time waveform of raw vibration data generated from the system was transformed into a frequency spectrum using the fast Fourier transform (FFT) method. These FFT signals were analyzed to detect the defective bearing. Another significant contribution of this paper is the application of a machine learning (ML) algorithm to diagnose bearing faults. The support vector machine (SVM) was used as the primary algorithm. As the efficiency of SVM heavily depends on hyperparameter tuning and optimum feature selection, the particle swarm optimization (PSO) technique was used to improve the model performance. The classification accuracy obtained using SVM with a traditional grid search cross-validation (CV) optimizer was 92%, whereas the improved accuracy using the PSO-based SVM was found to be 93.9%. The developed model was also compared with other traditional ML techniques such as k-nearest neighbor (KNN), decision tree (DT), and linear discriminant analysis (LDA). In every case, the proposed model outperformed the existing algorithms.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献